首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107131篇
  免费   11462篇
  国内免费   5741篇
电工技术   4928篇
技术理论   1篇
综合类   5318篇
化学工业   30092篇
金属工艺   11988篇
机械仪表   3900篇
建筑科学   5995篇
矿业工程   2439篇
能源动力   3060篇
轻工业   8843篇
水利工程   1156篇
石油天然气   3532篇
武器工业   812篇
无线电   10088篇
一般工业技术   14690篇
冶金工业   5865篇
原子能技术   1604篇
自动化技术   10023篇
  2024年   180篇
  2023年   1883篇
  2022年   3312篇
  2021年   5380篇
  2020年   3525篇
  2019年   3374篇
  2018年   3317篇
  2017年   4271篇
  2016年   5596篇
  2015年   6047篇
  2014年   7025篇
  2013年   7271篇
  2012年   6425篇
  2011年   6719篇
  2010年   5261篇
  2009年   5832篇
  2008年   5022篇
  2007年   6859篇
  2006年   6845篇
  2005年   5576篇
  2004年   4237篇
  2003年   4027篇
  2002年   2954篇
  2001年   2098篇
  2000年   1814篇
  1999年   1491篇
  1998年   1020篇
  1997年   918篇
  1996年   882篇
  1995年   670篇
  1994年   583篇
  1993年   482篇
  1992年   426篇
  1991年   357篇
  1990年   325篇
  1989年   251篇
  1988年   166篇
  1987年   150篇
  1986年   170篇
  1985年   166篇
  1984年   160篇
  1983年   122篇
  1982年   113篇
  1981年   110篇
  1980年   108篇
  1979年   77篇
  1977年   86篇
  1976年   85篇
  1975年   95篇
  1974年   95篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
Transition metal-nitrogen-carbon (M-N-C) materials have been the focus of scientists’ efforts to address the rising need for earth-abundant materials solutions for energy technology and decarbonization of the economy. They are viewed as one of the most promising candidates to replace platinum group metal (PGM) catalysts in the fuel cell and energy conversion fields, including the application of oxygen reduction reaction, carbon dioxide reduction reaction, and nitrogen reduction reaction. In the effort to improve M-N-C materials properties and achieve atomic dispersity of the transition metal in the carbonaceous matrix, a re-pyrolysis process has been proposed. This secondary heat treatment process of already obtained primary pyrolysis-derived M-N-C materials has been widely reported to substantially improve the electrochemical performance and operational stability of the catalysts. Here, we report a systematic investigation of this process used on samples of templated M-N-C catalysts to obtain state-of-the-art catalysts via in situ heating X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS), X-ray diffraction (XRD), and X-ray computed tomography (CT) characterization methods. It is found that the re-pyrolysis of M-N-C materials could result in the partial amorphization of the carbonaceous substrate. It causes the rearrangement and transformation of multitudinous N moieties, leading to optimization of their morphological display and association with atomically dispersed transition metal dopants. Ultimately, the re-pyrolysis results in an increase in uniformity of the active Fe-Nx sites distribution without the formation of nano-crystalline phases (metallic or carbide) and with overall preservation of the morphology of the carbonaceous framework achieved during the first formative pyrolysis step of the templated synthesis. These observations provide confirmation that empirically established re-pyrolysis is recommended to be used on all M-N-C materials despite the different synthesis routes to obtain a practical advanced catalytic material.  相似文献   
12.
13.
Conjugated polymers have emerged as a promising class of organic photocatalysts for photocatalytic hydrogen evolution from water splitting due to their adjustable chemical structures and electronic properties. However, developing highly efficient organic polymer photocatalysts with high photocatalytic activity for hydrogen evolution remains a significant challenge. Herein, we present an efficient approach to enhance the photocatalytic performance of linear conjugated polymers by modifying the surface chemistry via introducing a hydrophilic adenine group into the side chain. The adenine unit with five nitrogen atoms could enhance the interaction between the surface of polymer photocatalyst and water molecules through the formation of hydrogen bonding, which improves the hydrophilicity and dispersity of the resulting polymer photocatalyst in the photocatalytic reaction solution. In addition, the strong electron-donating ability of adenine group with plentiful nitrogen atoms could promote the separation of light-induced electrons and holes. As a result, the adenine-functionalized conjugated polymer PF6A-DBTO2 shows a high photocatalytic activity with a hydrogen evolution rate (HER) of 25.21 mmol g?1 h?1 under UV-Vis light irradiation, which is much higher than that of its counterpart polymer PF6-DBTO2 without the adenine group (6.53 mmol g?1 h?1). More importantly, PF6A-DBTO2 without addition of a Pt co-catalyst also exhibits an impressive HER of 21.93 mmol g?1 h?1 under visible light (λ > 420 nm). This work highlights that it is an efficient strategy to improve the photocatalytic activity of conjugated polymer photocatalysts by the modification of surface chemistry.  相似文献   
14.
《Ceramics International》2022,48(7):9124-9133
The main obstacles in lithium-ion battery are limited by rate performance and the rapid capacity fading of LiNi0.8Co0.1Mn0.1O2 (NCM811). Herein, a novel three-dimensional (3D) hierarchical coating material has been fabricated by in situ growing carbon nanotubes (CNTs) on the surfaces of Ni–Al double oxide (Ni–Al-LDO) sheets (named as LDO&CNT) with Ni–Al double hydroxide (Ni–Al-LDH) as both the substrate and catalyst precursor. The resultant LDO&CNT nanocomposites are uniformly coated on the surfaces of NCM811 by the physical mixing method. The rate capability of the resultant cathode material retains to 78.80% at a current rate of 3C. Its capacity retention increases by 6.7–14.42% compared with pristine NCM811 after 100 cycles within a potential range of 2.75–4.3 V at 0.5C. The improved rate capability and cycle performance of NCM811 are assigned to the synergistic effects between Ni–Al-LDO and CNTs. The hierarchical LDO&CNT nanocomposites coating on the surface of NCM811 avoids the aggregation of conductive CNTs and the stacking of Ni–Al-LDO nanosheets. Furthermore, it accelerates Li+ and electrons shuttle and reduces the reaction of Li2O with H2O and CO2 in air, which results in Li2CO3 and LiOH alkali formation on the NCM811 surface.  相似文献   
15.
人体大脑和身体的发育,需要从食物中摄取均衡的营养物质。人类大脑是区分人类和其他动物的特征。食物中的必需脂肪酸是机体组织结构和功能的必要组成部分。Omega-6(O6)亚油酸(LA6)是皮肤组织的组成成分,且是炎症、血栓形成、免疫和其他信号分子的前体;Omega-3(O3)α-亚麻酸(ALA3),特别是其长链代谢产物——二十二碳六烯酸(DHA3),是大脑、视网膜和部分神经组织中的关键组分。从富含LA6脂肪酸(缺乏O3脂肪酸)的植物籽中提取出的廉价而优质油脂,是20世纪的西方国家食品工业生产的主要脂肪来源。在代谢通路中,高浓度的LA6脂肪酸可拮抗O3脂肪酸代谢,造成O3脂肪酸不足,因此,在给怀孕动物的饲料中,只提供富含LA6但缺乏O3脂肪酸的油脂作为唯一的脂肪来源,会导致幼崽大脑发育不良。过去20~30年的研究表明,低含量LA6且含DHA3的油脂可改善大脑的功能。近年来的研究较多集中在营养因素对大脑发育的影响,最新研究数据表明,脂肪酸平衡对营养不良儿童的大脑发育尤为重要。世界卫生组织(WHO)越来越重视大脑的营养健康,通过其下属的食品法典委员会,建议用于治疗严重急性营养不良儿童的即食治疗食品中,使用含有均衡脂肪酸组成/构成的脂肪。同样,脂肪酸均衡对老年人可能也很重要。目前,业界已经有了调整油脂成分的方法,以确保脂肪酸均衡,从而维持人体整个生命周期的大脑健康。  相似文献   
16.
Solar steam generation has attracted considerable interest due to its easy accessibility and sustainability. However, dye molecules were gradually concentrated on bulk water or the surface of solar absorbers during the disposal of dye wastewater. Herein, LaB6/g-C3N4 composites were immobilized on porous cotton cloth, served as a solar absorber resistant to dye clogging. The optimal solar absorber possessed solar harvesting of 92.3% and showed great application potential in the field of the treatment of dye wastewater. This study presented a new approach for the treatment of dye wastewater.  相似文献   
17.
Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal–epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.  相似文献   
18.
CD4+ T cells orchestrate adaptive immune responses through their capacity to recruit and provide help to multiple immune effectors, in addition to exerting direct effector functions. CD4+ T cells are increasingly recognized as playing an essential role in the control of chronic viral infections. In this review, we present recent advances in understanding the nature of CD4+ T cell help provided to antiviral effectors. Drawing from our studies of natural human immunodeficiency virus (HIV) control, we then focus on the role of high-affinity T cell receptor (TCR) clonotypes in mediating antiviral CD4+ T cell responses. Last, we discuss the role of TCR affinity in determining CD4+ T cell differentiation, reviewing the at times divergent studies associating TCR signal strength to the choice of a T helper 1 (Th1) or a T follicular helper (Tfh) cell fate.  相似文献   
19.
Within the reactive oxygen species (ROS) generated by cellular metabolisms, hydroxyl radicals (HO) play an important role, being the most aggressive towards biomolecules. The reactions of HO with methionine residues (Met) in peptides and proteins have been intensively studied, but some fundamental aspects remain unsolved. In the present study we examined the biomimetic model made of Ac-Met-OMe, as the simplest model peptide backbone, and of HO generated by ionizing radiation in aqueous solutions under anoxic conditions. We performed the identification and quantification of transient species by pulse radiolysis and of final products by LC-MS and high-resolution MS/MS after γ-radiolysis. By parallel photochemical experiments, using 3-carboxybenzophenone (CB) triplet with the model peptide, we compared the outcomes in terms of short-lived intermediates and stable product identification. The result is a detailed mechanistic scheme of Met oxidation by HO, and by CB triplets allowed for assigning transient species to the pathways of products formation.  相似文献   
20.
The development of small molecules that can selectively target G-quadruplex (G4) DNAs has drawn considerable attention due to their unique physiological and pathological functions. However, only a few molecules have been found to selectively bind a particular G4 DNA structure. We have developed a fluorescence ligand Q1 , a molecular scaffold with a carbazole–pyridine core bridged by a phenylboronic acid side chain, that acts as a selective ascaris telomere antiparallel G4 DNA ASC20 ligand with about 18 nm blue-shifted and enhanced fluorescence intensity. Photophysical properties revealed that Q1 was sensitive to the microenvironment and gave the best selectivity to ASC20 with an equilibrium binding constant Ka=6.04×105 M−1. Time-resolved fluorescence studies also demonstrated that Q1 showed a longer fluorescence lifetime in the presence of ASC20. The binding characteristics of Q1 with ASC20 were shown in detail in a fluorescent intercalator displacement (FID) assay, a 2-Ap titration experiment and by molecular docking. Ligand Q1 could adopt an appropriate pose at terminal G-quartets of ASC20 through multiple interactions including π–π stacking between aromatic rings; this led to strong fluorescence enhancement. In addition, a co-staining image showed that Q1 is mainly distributed in the cytoplasm. Accordingly, this work provides insights for the development of ligands that selectively targeting a specific G4 DNA structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号